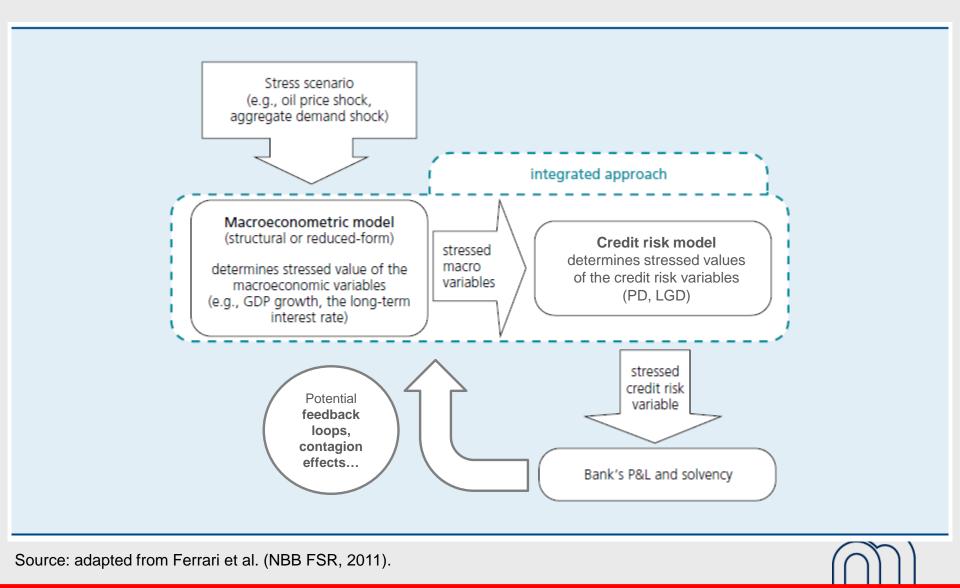

Robustness of Credit Risk Stress Test Results: Modelling Issues with an Application to Belgium


Stijn Ferrari, Patrick Van Roy* and Cristina Vespro National Bank of Belgium

Banco de México, 27 September 2017

Stress testing credit risk: typical process

Robustness of Credit Risk Stress Test Results

Paper summary

- Using data on the Belgian banking system, this paper estimates how the choices of different PD proxies and levels of data aggregation impact impairment losses hence banks' Tier 1 capital.
- In practice, these choices are often made on an ad hoc basis by banks / supervisors / academics. Yet, they appear to matter substantially for stress test results.
- Therefore, there might be a potential need to harmonize stress-test methodologies and improve data quality and availability.

Main contribution of paper

- Few papers have investigated the importance of the above-mentioned choices for stress test results.
- **Exceptions** (levels of data aggregation only):
 - Vazquez, Tabak and Souto (JFS, 2012) simulate the evolution of NPLs with and without exploiting a partition of credit portfolios by borrower types and economic sectors.
 - Düllmann and Kick (FMPM, 2014) simulate the evolution of expected losses using borrower-specific vs. sector level PD.

This paper:

- Considers not only the choice of the level of data aggregation, but also of the PD variable (or proxy).
- Is based on the adverse scenario of the 2014 EBA EU-wide stress test.

PD variables used in practice

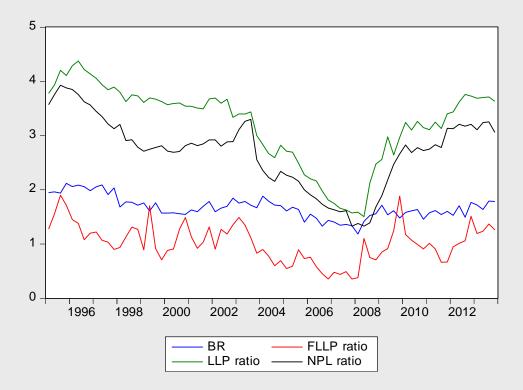
- Model-based measures (e.g. banks' internal PDs)
- Bank accounting data (NPL ratio => PD; LLP or FLLP ratio => PD with LGD component)
- Default data (e.g. default or bankruptcy rate)

The choice of the PD proxy depends on **data availability** and **practitioners' modelling choices**.

This choice matters for stress test results because of the nature of the PD variable:

- Backward vs. forward-looking
- **PIT** vs. **TTC**
- Stock vs. flow

PD variables used in this paper


<u>Variable</u>	Definition
NPL ratio	Stock of non-performing loans / Total loans
LLP ratio	Stock of impairments / Total loans
FLLP ratio	Flow of new impairments (net of reversal) / Total loans
BR	Bankruptcy rate = number of filings for liquidation type
	bankruptcy (t) / number of companies in existence (t-1)

Key differences (potentially impacting stress test results):

- NPL, LLP & FLLP = bank accounting data; BR = default data
- NPL, LLP & FLLP capture the credit risk of loans to Belgian and foreign counterparties; BR measures credit risk of Belgian counterparties only
- NPL & LLP = **stock** variables; FLLP & BR = **flow** variables

Evolution of the PD variables and correlation among them (1995Q1-2013Q4)

Contemporaneous correlations:

	BR	FLLP ratio	LLP ratio	NPL ratio
BR	1.00			
FLLP ratio	0.56	1.00		
LLP ratio	0.76	0.70	1.00	
NPL ratio	0.77	0.72	0.95	1.00

Levels of data aggregation used in practice

Borrower level

- Sectoral level (industrial, size, portfolios...)
- Economy-wide level

Models can also be estimated for **individuals banks** or the **whole banking sector**.

Models estimated on more granular data allow more differentiation in relationships between credit risk and the operating environment, yet are less efficient in terms of data and modelling resources.

Levels of data aggregation used in this paper (*bankruptcy rate only*)

<u>Level</u> Economy-wide	}	<u>Group(s) of firms</u> all firms (100%)
Sectoral]	manufacturing firms (7%), non-manufacturing
(industrial)		firms (93%)
Sectoral (size)	}	medium/ large firms (6%), small firms (94%)
Sectoral]	medium/ large manufacturing firms (1%), small
(industrial + size)		manufacturing firms (6%), medium/ large non-
		manufacturing firms (5%), small non-
		manufacturing firms (88%)

(% of the total population of Belgian firms in parenthesis)

Correlation among bankruptcy rates for different levels of data aggregation (1995Q1-2013Q4)

	economy- wide	manuf.	non- manuf.	medium/ large	small	medium/ large manuf.	small manuf.	medium/ large non- manuf.	small non- manuf.
economy- wide	1.00								
manuf.	0.79	1.00							
non-manuf.	0.99	0.74	1.00						
medium/ large	0.77	0.61	0.76	1.00					
small	0.99	0.79	0.99	0.72	1.00				
medium/ large manuf.	0.45	0.45	0.43	0.70	0.41	1.00			
small manuf.	0.74	0.96	0.69	0.47	0.75	0.19	1.00		
medium/ large non- manuf.	0.79	0.59	0.78	0.96	0.73	0.49	0.51	1.00	
small non- manuf.	0.99	0.73	0.99	0.72	0.99	0.42	0.69	0.73	1.00

Robustness of Credit Risk Stress Test Results

Empirical approach

Step 1: estimate the ADL credit risk model over 1995Q1-2013Q4:

$$C_t = \propto + \sum_{j=1}^l \beta_{t-j} C_{t-j} + \sum_{i=1}^m \sum_{j=0}^l \gamma_{i,t-j} M_{i,t-j} + \varepsilon_t$$

where:

 C_t = credit risk variable (PD) at time t $M_{i,t}$ = macroeconomic variable i at time t m = number of macroeconomic variables I = number of lags and ε_t = error term at time t

in the paper:

 $C_t = NPL, LLP, FLLP \text{ or } BR \text{ (at different levels of aggregation)}$

 $\mathbf{M}_{i,t}$ = business survey indicator, unemployment rate (UNEMP), and long-term interest rate (OLO)

I = 1; all variables (except the FLLP ratio) are taken in first differences

Step 1: credit risk model results (different PD variables)

	NPL ratio	LLP ratio	FLLP ratio	BR
Credit risk var. (t-1)	0.15 (0.12)	-0.16 (0.13)	0.58*** (0.09)	-0.55*** (0.10)
Bus. surv. indic. (t)	-0.01*** (0.00)	-0.01*** (0.00)	0.00 (0.00)	-0.00*** (0.00)
Bus. surv. indic. (t-1)	0.01** (0.00)	0.01*** (0.00)	-0.00** (0.01)	0.00*** (0.00)
UNEMP (t)	-0.05 (0.06)	0.00 (0.03)	-0.01 (0.01)	0.01 (0.01)
UNEMP (t-1)	0.03 (0.06)	0.03 (0.03)	-0.01 (0.01)	-0.00 (0.01)
OLO (t)	0.01 (0.07)	0.01 (0.03)	-0.03** (0.01)	0.02* (0.01)
OLO (t-1)	0.02 (0.06)	0.03 (0.03)	-0.02** (0.01)	-0.00 (0.01)
Constant	-0.04 (0.02)	-0.01 (0.01)	0.04*** (0.01)	-0.00 (0.00)
Observations	74	74	74	74
Adjusted R-squared	0.16	0.13	0.55	0.37

Empirical approach

Over the stress test horizon (2014Q1-2016Q4):

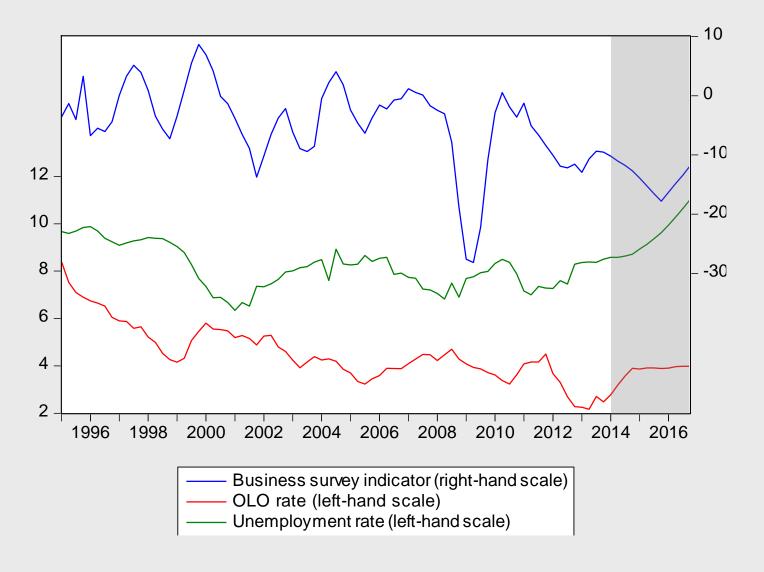
$$C_t = \propto + \sum_{j=1}^l \beta_{t-j} C_{t-j} + \sum_{i=1}^m \sum_{j=0}^l \gamma_{i,t-j} M_{i,t-j} + \varepsilon_t$$

- Obtain point estimate of C_t by multiplying $\hat{\beta}$ by lagged values of C_t and $\hat{\gamma}$ by the stressed values of $M_{i,t}$
- Obtain the distribution of C_t by adding 100,000 random draws of ε_t
- Step 3: compute EL distribution as PD × LGD × EAD with:
 - $PD = C_t$ distribution
 - LGD = 0.45 (NPL and BR) or 1 (LLP and FLLP)
 - EAD = Belgian banks' EAD
- **Step 4**: select 50th and 75th percentiles (p) of EL distribution.
 - 75th percentile accounts for model uncertainty

Empirical approach

Step 5: compute stress impact on banks' balance sheet

- Compute △EL(*p*) =
 EL(*p*) of Step 4 EL of 2013Q4
- Express $\triangle EL(p)$ in terms of Tier 1 ratio impact:


Tier 1 *impact*(*p*) = $\frac{\Delta EL(p)}{REA}$

with REA = Belgian banks' REA

- Note:
 - Different PDs => Total Tier 1 ratio
 - Different levels of data aggregation => Corporate Tier 1 ratio

Step 2: stressed macro variables (grey) for Belgium (EBA EU-wide stress test)

Robustness of Credit Risk Stress Test Results

Step 5: Tier 1 ratio impact

Different PDs: impact on Total Tier 1 ratio

	BR	FLLP ratio	LLP ratio	NPL	Average	Range
50 th percentile	-0.48pp	0.28pp	-1.25pp	-0.80pp	-0.56pp	1.53pp
75 th percentile	-1.64pp	0.08pp	-2.93pp	-2.31pp	-1.70pp	3.01pp

Different levels of aggregation: impact on Corporate Tier 1 ratio *

	Economy- wide	Industrial sector	Firm size	Industrial sector & firm size	Average	Range
50 th percentile	-0.33pp	-2.63pp	-0.31pp	-2.26pp	-1.38pp	2.32pp
75 th percentile	-1.10pp	-3.58pp	-1.63pp	-3.86pp	-2.54pp	2.76pp

* Corporate Tier 1 ratio = Tier 1 K for corp. exposures / REA for corp. exposures

Robustness of Credit Risk Stress Test Results

Robustness check: use of different lags for the credit risk satellite model

Range of impacts on <u>Total</u> Tier 1 ratio across different PDs

	1 lag	2 lags	3 lags	4 lags
50 th percentile	1.53pp	1.51pp	1.80pp	2.52pp
75 th percentile	3.01pp	2.96pp	3.29pp	3.83pp

Range of impacts on Corporate Tier 1 ratio across different levels of aggregation *

	1 lag	2 lags	3 lags	4 lags
50 th percentile	2.32pp	2.49pp	2.53pp	2.65pp
75 th percentile	2.76pp	2.77pp	2.55pp	2.86pp

* Corporate Tier 1 ratio = Tier 1 K for corp. exposures / REA for corp. exposures

Conclusion

- Stressed Tier 1 ratios can differ substantially depending on the PD variable and the level of data aggregation considered.
- Need to better harmonize stress-test methodologies across supervisors and institutions especially if solvency stress tests are used as a supervisory tool (e.g. for P2 decisions) or to set regulatory capital requirements (e.g. for systemically important banks).
- Need to improve the availability and quality of the data used for stress testing purposes.